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ABSTRACT:
Human nonverbal vocalizations such as laughter communicate emotion, motivation, and intent during social

interactions. While differences between spontaneous and volitional laughs have been described, little is known about

the communicative functions of volitional (voluntary) laughter—a complex signal used across diverse social

contexts. Here, we examined whether the acoustic structure of volitional laughter encodes social contextual

information recognizable by humans and computers. We asked men and women to produce volitional laughs in eight

distinct social contexts ranging from positive (e.g., watching a comedy) to negative valence (e.g., embarrassment).

Human listeners and machine classification algorithms accurately identified most laughter contexts above chance.

However, confusion often arose within valence categories, and could be largely explained by shared acoustics.

Although some acoustic features varied across social contexts, including fundamental frequency (perceived as voice

pitch) and energy parameters (entropy variance, loudness, spectral centroid, and cepstral peak prominence), which

also predicted listeners’ recognition of laughter contexts, laughs evoked across different social contexts still often

overlapped in acoustic and perceptual space. Thus, we show that volitional laughter can convey some reliable

information about social context, but much of this is tied to valence, suggesting that volitional laughter is a graded

rather than discrete vocal signal. VC 2025 Acoustical Society of America. https://doi.org/10.1121/10.0036388

(Received 11 September 2024; revised 19 March 2025; accepted 23 March 2025; published online 14 April 2025)

[Editor: Susanne Fuchs] Pages: 2774–2789

I. INTRODUCTION

During social interactions, people use their voices for

many communicative functions (Pisanski and Bryant, 2019).

We speak, laugh, cry, and scream, all in the service of social

signaling (Anikin et al., 2018). Yet, the ways we communi-

cate with our voices, as in all other modalities, are pro-

foundly shaped by social context. Even the clearest spoken

utterance is often not understandable independent from the

social situation in which it occurs (Sperber and Wilson,

1995). In the case of nonverbal vocalizations, such as laugh-

ter, this is also likely the case. But what information is pre-

sent in a laugh?

Intuitively, it is easy to assume there are different kinds

of laughs linked to various intentions (e.g., a melodic flirta-

tious laugh versus a monotonous, disinterested chuckle) and

that their meanings are recognizable without context.

Nevertheless, such intuitive assumptions have not been

extensively tested. Here, examining volitional (voluntary)

laughter in both its production and perception, we present

evidence that there are some minimal distinctions in how

people laugh across different social scenarios, and that these

distinctions are perceptible to human listeners and machine

algorithms. At the same time, we show that there is

substantial ambiguity in this vocal signal, with laughter

types overlapping in both acoustic and perceptual space in

predictable ways that reflect their emotional valence,

wherein valence can be defined as intrinsic pleasantness

(positive) or unpleasantness (negative) of a situation leading

to an emotion (Briefer, 2020; Goudbeek and Scherer, 2010;

Kelly et al., 2017). Acoustic structure is thus only one

(potentially minor) piece in the puzzle of how people inter-

pret laughter in context.

Researchers in human vocal communication have iden-

tified several categorical distinctions in laughter and other

non-linguistic vocalizations. One well established distinc-

tion is between spontaneous (reflexive) versus volitional

(voluntary) vocal expressions, which differ in their underly-

ing vocal control mechanisms and in their acoustic struc-

tures (Bryant et al., 2018; Bryant and Aktipis, 2014; Lavan

et al., 2016; Lavan et al., 2017). This is largely due to the

dual pathway vocal production system in humans

(Ackermann et al., 2014; Owren et al., 2011; Scott et al.,
2014). An evolutionarily conserved vocal emotion system

underlies the spontaneous production of our nonverbal vocal

repertoire, including spontaneous laughter, crying, pain

shrieks, sexual calls, and more. Yet, humans have a species-

specific volitional speech system. Neural projections

integrating motor cortex and language centers of the brain

innervate speech articulators and laryngeal musculature,a)Email: virgile.daunay@cnrs.fr
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affording volitional speech, as well as volitional emulations

of our conserved non-linguistic vocal emotion repertoire,

including laughter. That is, people can voluntarily laugh,

cry, and scream in often convincing ways (Anikin and

Lima, 2017; Bryant, 2020; Pisanski et al., 2016) owing to

direct connections between our brains and our vocal anat-

omy (Ackermann et al., 2014).

We refer to these types of voluntary vocalizations as

volitional because they require some degree of vocal control

(Pisanski et al., 2016). The remarkable control that humans

have over our vocal signals is quite unique among terrestrial

mammals, including primates (Ackermann et al., 2014). The

rarity of vocal control among primates underscores the criti-

cal need to study and understand how and why humans have

evolved the capacity to produce vocalizations voluntarily,

and how these volitional calls function in social life

(Pisanski et al., 2016). Not only did this capacity for vocal

control allow our species to evolve speech, it also allows us

to voluntarily modulate our non-linguistic vocalizations to

communicate, exaggerate, or entirely “fake” various emo-

tional states, such as when we embellish our pain cries

(Raine et al., 2018), or produce laughter entirely on demand.

Few studies have examined this rare human capacity in the

context of volitional laughter.

Most laughter in human social interactions is actually

volitional (Mazzocconi et al., 2020). We laugh during con-

versations for many pragmatic reasons, and we weave

laughter into our conversations in fine-grained ways.

Laughter is a powerful social tool for communicating subtle,

often indirect meaning in the context of ostensive communi-

cation (Bryant, 2023; Sperber and Wilson, 1995). Several

researchers have described the dynamics of conversational

laughter, such as its timing. For example, volitional laughter

tends to follow a more learned and structured rhythmic and

phonemic pattern, exhibiting stable vowel sequences more

frequently than spontaneous laughter, which tends to be

more irregular. It typically occurs at specific points in con-

versation, such as between words and conversational turns,

and can sometimes be incorporated into speech syllables

(Provine, 1993; Vettin and Todt, 2004). More recently,

Mazzocconi and colleagues (2020) described conversational

laughter as having propositional content and operating in

complex ways, depending on social and linguistic context,

closely linked to events or states they identified as

“laughables.” Much earlier, Jefferson et al. (1987) adopted a

similar approach in the tradition of conversational analysis,

describing the nuanced pragmatic functions and incredible

variability in how people laugh. If we are examining acous-

tic distinctions in laughter that map onto social communica-

tive functions, volitional laughter is a good place to start

given the highly variable social functions that it fulfills dur-

ing discourse (Jefferson et al., 1987; Vettin and Todt, 2004).

There have been several efforts to characterize possible voli-

tional laugh “types,” but as Mazzocconi et al. (2020) rightly

pointed out, these efforts have been hindered by confusing

levels of analysis, such as creating classification schemes

that mix laughter acoustics, functions, and triggers. For any

proposed laugh type, all of these aspects would need to be

described.

Like other non-linguistic vocalizations, laughter follows

a form to function mapping (Bryant, 2020; Morton, 1977,

p. 77; Owren and Rendall, 2001; Pisanski et al., 2022).

According to the form–function framework, the structural

acoustic features of signals (forms) are often shaped by

selection for their particular communicative uses (func-

tions). Thus, we can make many straightforward predictions

about which acoustic features we should expect in any given

vocal signal or call type depending on what that signal is

designed to accomplish. For instance, we can predict the

loud and low-pitched noisy elements in an aggressive growl

that evolved to enhance intimidation (Anikin et al., 2024),

the harsh and chaotic elements of a baby’s distress cry that

function to draw attention and inhibit habituation (Koutseff

et al., 2018; Lockhart-Bouron et al., 2023), or the joyful

high-pitched laughing of children playing, signaling plea-

sure and arousal (Nwokah et al., 1993). Form–function rela-

tionships are not only relevant for distinguishing between

different call types but can also apply within a single call

type, such as laughter. This means that graded structural

variations in vocalizations (i.e., “forms”) can correspond to

different functions. As a result, we should expect this form–-

function principle to apply to any vocal behavior.

Graded vocal signaling systems are characterized by

acoustic forms varying in a relatively smooth and continu-

ous fashion, for example, along a continuum from negative

to positive in valence and/or as a function of arousal and

intensity, rather than forming distinct acoustic signatures or

different call types (Anikin et al., 2018; Briefer, 2012, 2020;

Engelberg et al., 2021; Lockhart-Bouron et al., 2023). For

instance, in human and animal vocalizations, the acoustic

parameters—fundamental frequency (perceived as pitch),

duration, harmonics-to-noise ratio, spectral centroid, and

amplitude—have all been shown to vary gradually across

emotional contexts, particularly in relation to valence and

arousal (Briefer, 2012; Pinheiro et al., 2021; Sauter et al.,
2010a; Wood et al., 2017). Taken together, this gives us

solid theoretical reasons to expect a fair amount of ambigu-

ity and overlap in laughter acoustic structure that we

expected to be strongly linked to valence, perhaps especially

in volitional laughter, as it is under voluntary control and

may maximally incorporate valence signals.

From this principle, we can expect, for example, that

laughter intended to communicate amusement will be higher

pitched than laughter intended to communicate malice.

Importantly, we argue that form–function mappings may be

predicted largely by the positive or negative intent (valence)

of the laugh, which is closely linked to its communicative

function, from social bonding to exclusion (Bryant, 2020;

Scott et al., 2014). One common strategy for categorizing

laughter is to map acoustic features to emotion categories,

which are also linked to form–function correspondences and

social intentions (Anikin and Lima, 2017; Bryant, 2021;

Cosmides, 1983; Fernald, 1992). Cowen and colleagues

(2019) used machine classification methods to showcase the
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many nuanced affective distinctions that classifiers and

human judges can make in the emotional acoustic space,

including laughter. Traditionally considered primarily a pos-

itive emotional vocal signal, it is now widely recognized

that laughter can, in fact, accompany virtually any emotion

and occur in any social context, including nervousness,

anger, and sadness (Provine, 2001; Scott et al., 2014).

Some researchers report acoustic distinctions across so-

called laughter types. In one study, Szameitat et al. (2009a)

had eight professional actors laugh freely in emotionally

induced conditions of joy, being tickled, taunting another

person, and schadenfreude (i.e., feeling pleasure from anoth-

er’s misfortune). The laughter recordings were then classi-

fied by trained listeners, with correctly classified laughs

acoustically analyzed for frequency, intensity, and temporal

properties. Discriminant analysis, using a reduced set of

acoustic variables, successfully classified the four categories

of laughter with 84% accuracy, with reasonable perfor-

mance when using only single acoustic parameters among

those selected. These data suggested that different commu-

nicative functions shape the acoustic features of laughter.

For instance, joyful laughter tended to be higher pitched and

faster, reflecting positive affect. Taunting laughter, con-

versely, was lower pitched with a higher center of gravity,

associated with aggressive emotional intent (see also

Szameitat et al., 2022). In other work, the same researchers

also found that listeners could discriminate between four

distinct kinds of laughter based on emotional categories and

also on the affective dimensions of arousal and valence

(Szameitat et al., 2009a). The chosen laughter categories in

this work reflected actual social communicative intentions

in real interactions, but several aspects of the study methods,

in combination with one another, maximized the likelihood

of finding distinctions in laughter across contexts. Namely,

professional actors produced many of the laughter tokens,

which underwent a selection process prior to being classified

by listeners, essentially removing many ambiguous laughs

in the process. Acoustic variables were then reduced to a set

that were maximally distinct from one another. In the real

world of actual laughter by ordinary interactants, we may

not expect such clear distinctions between what are gener-

ally fairly blurred categories of social intent.

More recent work by Wood et al. (2017) examined

whether laughter acoustics were associated with the judged

social functional categories of reward, affiliation, and domi-

nance. Volitional laughter was taken from a sound library

and acoustically analyzed. The acoustic variables were then

used to predict listeners’ judgments of the social communi-

cative functions of the laughs. A strength of this research is

that the categories were rooted in social action and intention

rather than in more abstract emotion terminology, giving the

study relatively higher ecological validity. However, the

laughter itself was not actually produced in the social con-

texts it was linked to perceptually. Other work demonstrated

that laughter tokens matched in intensity and swapped

out in real recorded interactions were not distinguishable

by listeners, suggesting that laughter acoustics are quite

underdetermined, and instead social context drives people’s

judgments (Curran et al., 2018; Rychlowska et al., 2022).

In the current study, we aimed to address these apparent

contradictions and examined (1) whether volitional laughter

acoustically encodes distinct social contextual information;

(2) whether human listeners and machine algorithms can

accurately decode that social information, and if so; (3)

which acoustic features predict laughter categorization and

perception. For experimental control, we standardized our

laugh contexts and eliminated social factors that could influ-

ence volitional laughter production and perception, such as

relationship quality (Bryant et al., 2016). Thus, we recorded

people producing laughter in response to written prompts.

We created eight distinct social contexts with a specific

vignette for each. These contexts, partly based on previous

theoretical and empirical frameworks (Devillers and

Vidrascu, 2007; Lavan et al., 2016; Mazzocconi et al.,
2020; Nikopoulos, 2017; Ruch et al., 2014; Scott et al.,
2014; Szameitat et al., 2022), are not exhaustive but include

clear emotional distinctions and speaker intentions as well

as interactional aspects, from the “bright” (positive) side to

the “dark” (negative) side of laughter. Our eight laughter

contexts included: amused, colaughter, relief, acquaintance,

mocking, malicious, sarcastic and nervous. We examined

production and perception differences across social contexts

specifically (i.e., situational interpersonal circumstances that

contextualize a communicative signal), but we conceptual-

ize these differences largely in terms of the vocalizers’

intended communicative functions. For example, in the

amused social context, we are examining the interpretation

of an amused laugh functioning as a signal of positive affect

and affiliation. However, in the mocking social context, we

are anticipating the communication of negative affect and a

lack of affiliation toward an assumed listener. While we pre-

dicted at least some acoustic and perceptual distinctions in

laughter across these social contexts, we also expected high

overlap in laughter production and perception for laughs

sharing the same (positive or negative) valence.

II. METHODS

A. Vocal recording and analysis

We audio-recorded 49 students [mean age¼ 22.20

years; standard deviation [SD] ¼ 2.88; 30 females) from

Jean Monnet University (Saint-�Etienne, France). Vocalizers

completed a brief questionnaire indicating their native lan-

guage, as well as their sex, age, and height to consider

anatomical traits that might influence laugh acoustics

(Bachorowski et al., 2001; Lavan et al., 2019). All vocal-

izers provided informed consent, and none reported cur-

rently suffering from any conditions that might affect their

voices (e.g., cold, sore throat, voice pathologies).

Laughs (N¼ 382) were recorded digitally (48 kHz/

16 bit) in a sound-attenuated booth. Vocalizers stood 80 cm

from a Tascam DR05 portable microphone (TEAC

Corporation, Tokyo, Japan), positioned on a desk with a lap-

top. After recording neutral sentences and vowels,
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participants were presented with eight specific laughter con-

texts in a randomized order. They were instructed to take as

much time as needed to imagine themselves in each sce-

nario, which was described in a short text vignette displayed

on a monitor (see Table S1 in the supplementary material).

They were then asked to voluntarily produce a laugh that

they felt best reflected the given context. To preserve the

ecological validity of their responses and capture a more

natural volitional vocalization, participants were neither

coached nor given practice trials, and only their first laugh-

ter attempt for each scenario was considered for analysis.

This protocol is based on previous studies using similar

methods (Kamilo�glu et al., 2020; Lima et al., 2013; Raine

et al., 2018; Raine et al., 2019a, Raine et al., 2019b; Sauter

and Scott, 2007; Schr€oder, 2003).

The eight laughter contexts were chosen to encompass

both positively and negatively valanced scenarios (see Table

S1 in the supplementary material). Four contexts were catego-

rized as relatively negative, including laughs emitted with sar-

casm (sarcastic, n¼ 49), during a nervous moment (nervous,
n¼ 48), to mock someone else (mocking, n¼ 48), or the laugh

of an evil character in a cartoon (malicious, n¼ 49). The other

four contexts were more positive, including polite laughter

produced to signal social affiliation (acquaintance, n¼ 45),

laughter emitted while watching a comedy (amused, n¼ 49),

laughter in response to a situation of relief, such as when

receiving good news (relief, n¼ 46), and laughter shared with

a friend (colaughter, n¼ 48). After producing each laugh,

speakers were asked to rate their perceived positivity of the

context on a scale from extremely negative (1) to extremely

positive (100). A single continuous recording of each partici-

pant was obtained and each laugh token was excised manually.

All edited laughter samples were analyzed acoustically

using the Soundgen R package (Anikin, 2019). Acoustic mea-

sures were taken from the entire laughter bout for each laughter

context, spanning from the onset of visible acoustic energy

(the first burst or glottal cycle) to the offset of energy (final

inspiratory element) in the final burst [Fig. 1(A)]. Pitch con-

tours were manually verified for each laugh following an initial

automatic detection using Soundgen (Anikin, 2019). The

“analysis” and “segment” functions of this package provided

measurements of numerous acoustic parameters. We focused

our analyses on the 24 most relevant acoustic features (see

Table S2 in the supplementary material) based on recent

research on laughter and other nonverbal vocalizations that has

demonstrated the communicative relevance of these acoustic

FIG. 1. Human listeners recognize laughter contexts better than chance but with low accuracy. (A) Sample waveform and narrowband spectrogram

(Gaussian window, 44.1 kHz sampling rate, 0 –5 kHz) of a 3 s malicious laughter bout with nine bursts and a 1.5 s amused laughter bout with seven bursts

produced by the same woman. In these examples, malicious laughter is lower pitched and more regular than is amused laughter. (B) Hu scores (arcsine-

transformed unbiased hit rates) indicating listener’s ability to discriminate laughter contexts above the arcsine-transformed chance level (0.12, dashed line),

controlling for individual perceptual biases. Each context was significantly recognized above this corrected chance level [t (1780) > 1.9; p< 0.05]; only the

acquaintance context showed a negligible effect size (Cohen’s d¼ 0.09). However, note that except for malicious laughter, Hu scores were not higher than

30, showing only a moderate capacity in human listeners to recognize most laughter contexts.
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features (e.g., Bachorowski and Owren, 2001; Briefer, 2012;

Bryant and Aktipis, 2014; Pinheiro et al., 2021; Sauter et al.,
2010a).

The duration of each laugh was measured based on the

length of each bout. For all other acoustic parameters, we mea-

sured the mean, including fundamental frequency (fo), ampli-

tude (amp), and the frequency of maximum amplitude

(peakFreq). Parameters describing voice quality were also mea-

sured: how loud the laugh sounds (an estimate of subjective

loudness in sones), how rough it sounds (roughness based on

the proportion of energy within the range of perceptible tempo-

ral modulation frequencies), and how noisy it is based on the

harmonics-to-noise ratio (HNR), Wiener entropy, and cepstral

peak prominence (CPP), which also measure vocal instability.

The regularity of laughter was measured by the mean frequency

of frequency modulation (vibrato, jitter), whereas the center of

gravity of each spectrum (SpecCentroid, the center of gravity of

spectrum) indicated the relative influence of lower versus

higher frequencies indicating how “bright” a laugh sounds.

Temporal parameters included the duration between laugh

bursts [mean intervoicing interval ( IVI)], the duration of these

interburst intervals, the number of bursts (i.e., continuous seg-

ment different from noise) per second (nburst.s-1), and the rate

of the intervoicing interval as defined by Bryant and Aktipis

(2014) to measure the average rate of unvoiced segments per

call in each laugh. Finally, we measured the proportion of

voiced parts across all laughter bouts (voicing) and within calls

(voiced_noSilence). For all these variables, we calculated the

coefficient of variation (CV), which expresses relative variabil-

ity by calculating the ratio between the standard deviation and

the mean of the given acoustic parameter. This approach allows

for meaningful comparisons across individuals with different

mean values, minimizing the imbalance due to these absolute

individual differences.

B. Perception experiment

We created a forced-choice experiment using the

Labvanced platform (Scicovery GmbH, Paderborn, Germany)

(Goeke et al., 2017). Listeners were recruited online through

Prolific (Prolefic Academic Ltd., London, UK) and compen-

sated at the recommended rate of £8/h (�$10.30/h) for their

time. At the beginning of the experiment, we collected demo-

graphic information from listeners, including age and gender

(see S1 in the supplementary material). We also collected

information about musical experience (e.g., whether partici-

pants play a musical instrument) as well as vocal performance

experience, such as acting or singing. Participants reported

whether they have such experience and its duration in years

(duration of musical experience and duration of vocal perfor-
mance experience). We instructed listeners to complete the

experiment in a quiet environment.

The sample size of listeners was determined through a

power analysis using the (Champely, 2020) R package for a

z-proportion test given d¼ 0.2, power¼ 0.80, and a¼ 0.05.

To detect a small effect size on this task, 155 listeners were

required. To ensure listeners were wearing headphones, we

incorporated a verification task (Woods et al., 2017) and

automatically excluded listeners who failed. Additionally,

two random attention checks were implemented in which

listeners were asked to indicate when an artificial tone was

played instead of a laughter stimulus. Before the actual

experiment, listeners were presented with a sound file con-

taining two volitional laughs (one loud and one quiet) not

included in the experiment. They were instructed to raise

their computer volume until they could clearly hear the quiet

stimulus without feeling discomfort from the louder one.

Subsequently, listeners were asked to not adjust their vol-

ume during the whole experiment, and this was reconfirmed

at the end of the experiment. Participants who reported mod-

ifying the volume or not wearing headphones were removed

from the analysis. Thus, from 168 English-speaking listen-

ers, 12 were excluded for a final sample size of 156 listeners

(mean age¼ 29.8 years, range: 19–69 years; 76 females).

The perception experiment began by presenting each

laugh context and the associated vignette used during the

production task (see Table S1 in the supplementary material).

Listeners were first required to rate the perceived emotional

valence of each context on a 100-point scale, ranging from

extremely negative to extremely positive, following the same

protocol as for the speakers. Thus, in this study, we collected

valence ratings of laughter contexts from both the speakers and

the listeners.

In a second step, 80 volitional laughs (ten for each con-

text, with an even distribution of male and female laughs)

were randomly selected from the 382 recordings and pre-

sented to listeners in random order. Their task was to select

which context the laugh was produced in, from among the

eight different contexts presented in a random order. The

same vignette used for the vocalizer task, initially presented

in full at the start of the experiment, was provided in a short-

ened version during each trial as a reminder. Listeners could

replay laughs an unlimited number of times before selecting

the context.

C. Statistical analysis

All statistical analyses were conducted using R software

(R Core Team, 2021). To first test whether ratings of emo-

tional valence varied by laughter context as predicted, we

ran a linear mixed model on vocalizer valence ratings for

each context, with vocalizer ID as a random effect. We car-

ried out a second similar analysis on the listeners’ valence

ratings of the laughter contexts and associated vignettes. We

ran a third linear mixed model to investigate any differences

between vocalizer and listener valence ratings.

We then used machine classification algorithms in con-

junction with human classification to test how laughter

varies by context based on a set of acoustic parameters

(focusing on the production aspect) and to assess listeners’

ability to identify these contexts (focusing on the perception

aspect). If the accuracy of listeners’ classifications is higher

than the accuracy of the classification algorithms, it likely

suggests that the selected acoustic features do not capture
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the full range of acoustic variation among contexts.

Conversely, low accuracy in listeners’ classifications could

indicate that listeners are unable to detect all the acoustic

variation present. Last, if the results from both methods

(machine and human) are similar, this would suggest that

the chosen acoustic features in our analysis are similar to

those features tracked by listeners.

1. Classification algorithms

Choosing a classification algorithm often involves a

trade-off between several important features including the

structure of the data, the computation time, interpretability,

and robustness. Different classifiers will also exploit the

data in different ways (Arnaud et al., 2023). For this study,

we analyzed two supervised classifiers: discriminant func-

tion analysis (DFA) and random forest (RF). By employing

two distinct classifiers, we aimed to balance robustness and

interpretability while leveraging each method’s specific

strengths to explore the relative roles of acoustic variables

in classifying laughter contexts (additional details regarding

the models can be found in S2 in the supplementary

material).

These models were evaluated across 1000 iterations,

wherein each iteration involved generating a new pair of

training (80% of the data) and test (20% of the data) sets,

with stratification based on laughter context to ensure class

balance. The acoustic variables were used directly without

dimensionality reduction to maximize interpretability and

assess the relative contributions of each feature (Anikin and

Persson, 2017; Wadewitz et al., 2015). To address multicolli-

nearity, variables exceeding a variance inflation factor (VIF)

threshold of five were excluded (James et al., 2013).

Specifically, the following variables were removed: coeffi-

cient of variation of amplitude (VIF¼ 10.7), fo bandwidth

(VIF¼ 9.2), spectral centroid mean (VIF¼ 9.08), and voiced

proportion (VIF¼ 5.1). Acoustic variables were normalized

(mean¼ 0; SD¼ 1), and frequency-related measures were

log-transformed before normalization. One laugh, produced

in a mocking context by a female, was completely unvoiced

and thus excluded from the classification analysis.

The DFA model was trained using tenfold cross-

validation repeated ten times. Model performance was

evaluated using accuracy, precision, recall, and F1-score,

calculated based on predictions made for the test samples.

Confusion matrices were also generated, and variable contri-

butions were assessed using loadings. Performance metrics

were averaged over 1000 iterations, with confidence inter-

vals calculated.

Prior to model evaluation, hyperparameters of the RF

were optimized using a ten-time repeated tenfold cross-

validation. Initial tuning was performed via a random grid

search, followed by refinement with a regular grid of five

levels. The selected hyperparameters included mtry (number

of predictors per split)¼ 10, min_n (minimum observations

per node)¼ 20, and n_trees (number of trees)¼ 1000. The

model was trained and tested using a DFA “data splitting”

approach, with performance metrics calculated for each test

sample. Variable importance was assessed using permutation-

based importance with the Variable Importance Plots (vip) R

package (Greenwell and Boehmke, 2020), which evaluates the

impact of shuffling each variable on model performance. As

with the DFA, metrics were averaged over 1000 iterations and

confidence intervals were calculated.

2. Models examining listeners’ laughter judgments

We constructed a generalized linear mixed model

(GLMM) based on the binomial family (response correct or

incorrect) to analyze whether listeners could reliably recog-

nize laughter contexts based only on the acoustic signal.

Generalized linear mixed models (GLMMs) allowed us to

consider the random effects of the variability of responses

among different listeners and the variability in laughter

acoustics across speakers. The chance level was set to 0.125

(eight contexts). We defined a logit for this reference proba-

bility, which was entered into the model as an offset term.

We first built an omnibus model including both vocalizers’

and listeners’ individual difference measures (e.g., sex, age,

and musical experience) that have been shown to potentially

affect vocal perception (Amorim et al., 2021; Cartei et al.,
2020). The total time taken by the listener to complete the

experiment was also considered.

The importance of these fixed effects was then estimated

by the different combinations of fixed effects and their interac-

tions using AICc comparisons. The best model to explain con-

text recognition accuracy included the fixed effect of laughter

context, vocalizer sex, and listener age (see Table S3 in the

supplementary material). Interactions between age and con-

text, and sex of the speaker and context, were also included.

Post hoc analyses with z-tests (Holm correction for multiple

testing) were then performed to assess the effects of each fixed

factor on accuracy. For each listener, we computed the unbi-

ased hit rate (Hu scores) (Wagner, 1993) to control for indi-

vidual biases in choosing some contexts more than others.

These values were arcsine-transformed and included in a sec-

ond GLMM model with the same fixed and random effects.

Finally, we ran post hoc tests with holm correction for multi-

ple comparisons and compared arcsine-transformed Hu scores

to arcsine-transformed corrected chance levels for each laugh-

ter context (Wagner, 1993).

3. Models examining laughter acoustics

We performed independent linear mixed models on each

acoustic feature selected as the response variable to test how

laughs varied acoustically across contexts. Models included

context and vocalizer sex as fixed effects, and vocalizer iden-

tity as a random effect. To test the influence of context on

each parameter, we compared each model to the null model

with a likelihood ratio test. The importance of fixed effects

was also considered by ranking the model using the corrected

Akaike information criteria (AICc). We calculated marginal

R2 values to compute the proportion of variance explained by

each acoustic parameter. Finally, we calculated estimated
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marginal means based on the fitted results of each model. On

these, pairwise comparisons were made with post hoc tests

(Holm correction for multiple testing).

We then tested the predictions of each acoustic feature

on listeners’ recognition across contexts through multiple

generalized mixed models based on a binomial distribution

(correct vs incorrect). As using all 24 acoustic parameters in

one model would certainly overfit it, we built multiple gen-

eralized mixed models with one acoustic parameter and its

interaction with laugh context. We included speaker and lis-

tener IDs as random effects. We examined both the AICc,

which balances model fit and complexity and the marginal

R2, which quantifies the variance explained by fixed effects.

Together, these metrics provide a comprehensive assess-

ment of each acoustic parameter’s contribution to laughter

perception. Tukey’s post hoc analyses with Holm correction

were then performed to test the effects of each acoustic

parameter on listeners’ recognition of laughter context.

III. RESULTS

A. Context-specific laughs are recognized by both
humans and machines, but not with precision

Overall, our results show that laughter acoustics can

encode contextual information that is detectable by both

machine algorithms and human listeners, but not with high

precision, across discrete laughter contexts (Table S4).

Indeed, both human listeners and classification algorithms

could significantly identify the context of laughter above

chance level (12.5%), but accuracy varied considerably

depending on the laughter context (Table I).

For both computer algorithms and human listeners, ner-
vous, colaughter, and amused contexts were consistently

recognized at levels exceeding chance (from 26% for

colaughter to 43% for amused laughter, RF) (see Table I).

Similarly, the malicious context showed the highest recogni-

tion accuracy in all classification tests, exceeding 50% accu-

racy. In contrast, relief, acquaintance, and mocking laughter

contexts were consistently recognized at rates not exceeding

chance (<12.5%) or at low accuracy for the DFA (21% for

mocking) (Table I).

Our models comparing human and machine performance

showed that machines and humans performed highly similarly.

Only minor differences were observed, notably the malicious
context was less effectively recognized by humans, whereas

sarcasm was more effectively recognized by humans, com-

pared to machines (Table S5 in the supplementary material).

To control for potential biases in judging laughter contexts,

we examined unbiased hit rates (Hu scores), which revealed that

all eight contexts were significantly recognized higher than cor-

rected chance levels by human listeners [Fig. 1(B)]. Vocalizer

sex also predicted variance in listeners’ unbiased hit rates

[Fig. 1(B)], wherein mocking laughter [t(2362)¼�4.161;

p< 0.001; d¼�0.47] was significantly better recognized when

the vocalizer was male. Conversely, nervous laughter was signifi-

cantly better recognized when the vocalizer was female

[t(2362)¼ 4.05; p< 0.001; d¼ 0.46]. As with raw hit rates, we

observed a slight decrease in accuracy with listener age with

small effects for malicious [t(1832)¼�5.98; p< 0.001;

d¼�0.24], and negligible effects for mocking [t(1832)¼�2.64;

p¼ 0.008; d¼�0.11], sarcastic [t(1832)¼�2.11; p¼ 0.035;

d¼�0.08], and colaughter [t(1832) ¼ �2.00; p¼ 0.046;

d¼�0.08] contexts. Similar effects of vocalizer sex (Table S6 in

the supplementary material) and listener age (Table S7 in the sup-

plementary material) were found in models based on raw ratings.

In our sample of listeners, 41 self-reported as musicians

and 32 reported having vocal performance experience.

However, models including musical (AICc ¼13 956;

v2
8¼ 6.24; p¼ 0.62) and vocal experience of listeners

(AICc¼ 13 956; v2
8¼ 8.18; p¼ 0.41) were no different from

the null model (AICc¼ 13 947). Similarly, the model includ-

ing the total time taken to complete the experiment was not

significantly different from the null model (AICc ¼13 949;

v2
8¼ 13.33; p¼ 0.10). Thus, these variables were shown to

have no significant effects on context discrimination accuracy.

B. Laughter contexts are systematically confused
with those that share the same valence

Having established that social context is encoded in

laughter sufficiently for both machine algorithms and

human listeners to recognize contexts better than chance

TABLE I. Laughter context recognition accuracy by human listeners and machine classification algorithms based on 24 acoustic parameters. Recognition

rates in bold are significantly higher than chance (12.5%).

Laughter context

Human listeners DFA Random forest

Mean 95 % CI Mean 95 % CI Mean 95 % CI

Malicious 0.50a [0.46–0.53] 0.63a [0.62–0.64] 0.70a [0.69–0.70]

Nervous 0.36a [0.34–0.39] 0.27a [0.27–0.29] 0.37a [0.36–0.38]

Sarcastic 0.35a [0.33–0.38] 0.17a [0.16–0.18] 0.12a [0.11–0.12]

Acquaintance 0.15 [0.13–0.17] 0.14 [0.1 3–0.14] 0.07 [0.06–0.07]

Mocking 0.18 [0.16–0.2] 0.21a [0.20–0.22] 0.10 [0.09–0.10]

Relief 0.17 [0.15–0.19] 0.10 [0.09–0.11] 0.01 [0.01–0.01]

Colaughter 0.28a [0.26–0.31] 0.27a [0.26–0.28] 0.26a [0.25–0.26]

Amused 0.28a [0.25–0.3] 0.30a [0.29–0.31] 0.43a [0.42–0.44]

Overall 0.28a [0.27–0.29] 0.28a [0.28–0.29] 0.29a [0.29–0.29]

ap value< 0.001.
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(though with low discrete classification), we tested specific

confusion patterns. When listeners and machines are wrong,

which laughter contexts do they most often confuse?

The confusion matrix of the two machine classification

algorithms (Fig. 2) revealed that amused and colaughter
were highly confused, usually more than 20% of the time.

This is further illustrated by the tree plots in Fig. 2, showing

a very close Euclidean distance between these two types of

positive laughter. Mocking and relief laughs were also often

confused with amused and colaughter laughs (>17%).

These contexts formed one cluster according to our hierar-

chical cluster analysis. Another cluster was composed of

nervous, sarcastic, and acquaintance laughs. These contexts

were also often confused with each other (>10%); for

instance, sarcastic laughter was misclassified in more than

23% of cases as nervous, whereas nervous laughter was mis-

classified in more than 16% of cases as sarcastic.

We found similar clusters based on the classification

matrix and Euclidean distances for human listeners (Fig. 2):

Amused and colaughter laughs were again often confused with

one another (>25%). Mocking laughs were also regularly con-

fused with amused and colaughter contexts by humans

(>19%). Nervous laughter was often confused with acquain-
tance laughter (19%), sarcastic laughter (13%), or relief laugh-

ter (10%). Finally, malicious laughter was often considered

sarcastic (20%) or as mocking (15%), explaining its lower rec-

ognition accuracy for humans compared to computer algo-

rithms (Table S5 in the supplementary material).

We found that laughter contexts could be clustered

based on confusions made by humans and machines, raising

the possibility that confusion clusters could be explained by

valence. As illustrated in Fig. 3(A), vocalizers perceived

the emotional valence of their laughter contexts in a

graded manner [Fig. 3(A)] [linear mixed model (LMM):

FIG. 2. Laughter contexts are system-

atically confused with those that share

the same positive or negative valence.

Heatmaps of confusion matrices (%)

for context classification accuracy by

the DFA, RF model, and human listen-

ers. The x axes represent the true clas-

sification and the y axes represent the

predicted classification. The color of

each cell represents the proportion of

contexts accurately predicted, with

lighter shades showing lower classifi-

cation accuracy and darker shades

showing higher classification accuracy.

The dendrograms on the right were

obtained through hierarchical cluster-

ing using Ward D2 methods and build

on Euclidean distances calculated from

these confusion matrices. The gray

gradients correspond to the Euclidean

distances between each context. For

the DFA and RF classification models,

data were obtained from 1000 itera-

tions with different train and test sets

for each. For human listeners, data

were derived from the perception

experiment on 156 listeners. These tree

plots show that some contexts are often

confused with others, such as amused

and colaughter.
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AICc¼ 3404.7; v7 ¼ 351:9; p< 0.001]. Post hoc compari-

sons revealed that the contexts of colaughter [M¼ 87.3;

standard error (SE)¼ 3.01], amusement [marginal mean
(M)¼ 85.8; SE¼ 2.98], and relief (M¼ 81.9; SE¼ 3.07),

and were rated similarly positively by vocalizers (p >0.05)

and were significantly more positive in valence compared to

all other contexts (p< 0.001). The contexts of mocking
(M¼ 53.0; SE¼ 3.01), malicious (M¼ 45.2; SE¼ 3.028.4),

and acquaintance (M¼ 42.9; SE¼ 3.1) were rated as inter-

mediate in valence and did not significantly differ from one

another. These three contexts were rated significantly more

positively (p< 0.001) than the sarcastic (M¼ 29.1;

SE¼ 3.0) and nervous (M¼ 20.1; SE¼ 3.01) contexts,

which received the most negative valence ratings by

vocalizers.

Similar results were found when listeners rated the

valence of laughter contexts before the listening experiment

[Fig. 3(B)] (LMM: AICc¼ 10 867; v7 ¼ 1587; p< 0.001).

Amusement (M¼ 92.5; SE¼ 1.52), relief (M¼ 87.8;

SE¼ 1.52), and colaughter (M¼ 87.2; SE¼ 1.52) were

rated similarly positively by listeners (p> 0.05).

Acquaintance laughter (M¼ 50.9; SE¼ 1.52) was also rated

as intermediate in valence and significantly more positive

(p< 0.001) than the sarcastic (M¼ 29.9; SE¼ 1.52), ner-
vous laughter (M¼ 29.0l; SE¼ 1.52) and, contrary to the

vocalizer’s rating, the malicious context (M¼ 25.6;

SE¼ 1.52). These laughter judgments were significantly dif-

ferent from one another. Finally, mocking laughter

(M¼ 15.3; SE¼ 1.52) received the most negative valence

rating from listeners (p< 0.001). Indeed, concerning the

third linear mixed model (AICc¼ 14 292; v7 ¼ 1942:9;
p< 0.001), malicious and mocking laughter were rated sig-

nificantly more negatively by listeners than vocalizers

(p< 0.001). However, there were no significant differences

FIG. 3. Vocalizers and listeners rate the emotional valence of laughter contexts in a similar way. (A) Vocalizers’ valence ratings of each laughter context

after acting out the laugh. Pairwise comparisons made on estimated marginal means obtained from a linear mixed model, with individuals as random effects,

significantly discriminated three levels of valence for the laughter contexts (Tukey’s post hoc tests P< 0.001), with group “a” representing the most posi-

tively rated contexts (amused, colaughter, relief), group “b” representing significantly less positive contexts (mocking, malicious, and acquaintance), and

group “c” representing the most significantly negatively rated contexts (nervous and sarcastic). (B) Listener’s valence ratings of laughter contexts before the

listening experiment. Pairwise comparisons made on estimated marginal means obtained from a linear mixed model with individuals as random effect signif-

icantly discriminated four levels of valence for the laughter contexts (Tukey’s post hoc tests P< 0.001), with group ‘a’ representing the most positively rated

contexts (amused, colaughter, relief), groups “b” and “c” representing significantly less positive contexts (acquaintance followed by malicious, nervous, and

sarcastic), and finally mocking laughter as the most negatively rated context (group “d”). Overall, our results show that the perceived valence of laughter

contexts was similar for vocalizers and listeners.
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in valence between the other laughter (p> 0.05), indicating

that vocalizers and listeners showed high agreement about

which laughs were positive and which were negative.

In sum, as illustrated in Figs. 2 and 3, when listeners

incorrectly judged the context of a laugh, the confusion was

generally with laughter contexts of a similar valence (posi-

tive or negative), especially when we consider the valence

ratings of vocalizers.

C. Fundamental frequency, acoustic energy, and
temporal regularities differentiate context-specific
laughs

We have shown that social contextual information in

volitional laughter is detectable by human listeners and

machine classification, and that confusions among contexts

are predictable based on vocalizer’s valence ratings. Next,

we examined which acoustic parameters varied as a function

of context (production), and how those features predicted

listeners’ contextual judgments (perception).

Independent linear mixed models (LMMs), with vocal-

izer sex and laughter context as fixed factors, showed signif-

icant variation in acoustic parameters across laughter

contexts. Figure 4 illustrates forest plots of the ten acoustic

features (out of all 24) that explained the most variance in

laughter acoustics according to independent LMMs and

marginal R2 by social context of laughter [Fig. 4(A)].

According to the marginal R2, the following acoustic varia-

bles explained a substantial portion of the variance in

FIG. 4. Laughter acoustic structure varies across contexts, and is used by listeners to assess laughter context. (A) Forest plots of the ten acoustic features

that explained the most variance in laughter acoustics according to independent LMMs and marginal R2 by social context of laughter. Solid central markers

represent scaled estimated marginal means from LMMs with 95% confidence intervals, with translucent markers showing the full distribution of the data.

Colored central markers represent significant differences in marginal means compared to the average mean in Tukey’s post hoc tests with Holm

correction for multiple comparisons, whereas greyed-out points are not significantly different from the average mean of all contexts combined (dashed verti-

cal line¼ 0). (B) The ten acoustic features that best explained variance in laughter acoustics, based on independent LMMs and marginal R2 values, predict-

ing listeners’ recognition of each laughter context: standardized parameters and 95% confidence intervals (error bars) obtained from a GLMM based on a

binomial distribution. Colored markers represent significant parameters based on a Wald approximation, and greyed-out markers show non-significant

effects relative to the null effect shown by the dashed line (0). CPP, cepstral peak prominence; CV, coefficient of variation; HNR, harmonic-to-noise ratio;

PeakFreq; frequency of maximum amplitude; SpecCentroid: spectral centroid.
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laughter acoustics across fixed effects: mean fo (56%), subjec-

tive loudness (23%), duration (20%), peak frequency (20%),

and variation of entropy (19%). Similar results were found

with LMMs for each sex with only laughter context as a fixed

factor (Table S2 in the supplementary material). Notably,

mean fo explains similar variance in both male (18%) and

female (21%) vocalizers’ productions of laughter across differ-

ent contexts (see Table S2 in the supplementary material).

In post hoc tests comparing marginal means of parame-

ters to the average across all contexts (Fig. 4), we found that

positive laughs produced in amused, colaughter, and relief
contexts were significantly higher pitched with less entropy

variation than were other laughs. Amused and colaughter
laughs were also shorter and more irregular and noisier

according to CPP measures. Amused laughs were particu-

larly loud, with peak amplitude at higher frequencies.

Mocking laughter showed amplitude peaks at higher fre-

quencies and low entropy variation. Sarcastic, acquain-
tance, and nervous laughs were relatively quiet, less rough,

and had peak amplitudes at lower frequencies. Sarcastic and

nervous laughs were also lower in fo, longer, and their

amplitude peaks were lower. Malicious laughs had a lower

and more variable fo, with amplitude peaks at higher fre-

quencies, more variability in entropy, and were louder than

most other laughs (see Table S8 in the supplementary

material).

Taken together, much of this acoustic variance follows

predictable form–function mappings. Malicious laughter eli-

cited the most extreme acoustic features, corroborating its

strong perceptual salience as revealed by the perception

experiment. Generally, fo (perceived as pitch) and variation

of entropy (affecting the consistency of how noisy the whole

laugh sounds) were highly comparable for laughs emitted in

contexts with a similar valence [see Fig. 4(A)]. Positive

laughs were, as predicted by our form–function framework,

relatively higher pitched than were negative laughs.

Next, we examined which acoustic features were most

important for the classification algorithms when

discriminating laughter contexts. While the predictive

capacity of the classification algorithms is limited and this

may not fully represent the absolute acoustic differences

across contexts, our results showed that the same acoustic

parameters that varied by laughter context based on our

acoustic analyses above also predicted the performance of

our classifiers. In the DFA (Fig. 5), mean entropy

(r¼�0.65) and mean pitch fo (r¼�0.51) both loaded nega-

tively onto the first dimension, whereas entropy variation

(r¼ 0.64) and mean CPP (r¼ 0.58) loaded positively. Mean

peak frequency (r¼�0.71), pitch variance (r¼�0.54),

loudness (r¼�0.53), and roughness (r¼�0.52) all nega-

tively loaded onto the second dimension, whereas HNR

loaded positively (r¼ 0.52). In the RF models, peak fre-

quency and pitch mean were the most important acoustic

parameters for discriminating laughter contexts (Figure S1).

Together, these results show that from our selection of

acoustics parameters, those that most strongly differentiated

laughter contexts were fo (pitch), the distribution of energy

in the laugh, as well as the regularity of the laughter bouts.

Additionally, our results show that laughter contexts that are

most often confused with each other have similar acoustics

profiles.

D. Acoustic parameters predict how effectively
listeners can judge the meaning of laughter

Using generalized LMMs, we investigated whether the

acoustic parameters used by listeners to accurately assess

laughter contexts were the same as those that differentiated

laughs by context [Fig. 4(B)]. We found that all models were

better fitted than the null model (Table S9 in the supplementary

material), [v2(8)> 50; p< 0.001]. However, each acoustic

parameter and its interaction with context showed only weak

explanatory power (marginal R2< 0.1). The mean spectral

centroid (marginal R2¼ 0.070; AICc¼ 11 651), mean pitch

(marginal R2¼ 0.060; AICc¼ 14 331), entropy mean (mar-
ginal R2¼ 0.058; AICc¼ 11 696), entropy variation (marginal
R2¼ 0.050; AICc¼ 11 854), and variation of HNR (marginal

FIG. 5. Laughter acoustics vary across contexts in a graded manner that is related to emotional valence. Discriminant function analyses illustrating acoustic

separation of laughs by context and valence for all vocalizers. Fundamental frequency parameters (mean and coefficient of variation of the pitch) and energy

parameters (mean and coefficient of variation of entropy, mean peak frequency, subjective loudness, roughness, harmonics-to-noise ratio, and cepstral peak

prominence) were the main acoustic parameters that explained variance in laughter across contexts. Each data point represents the individual context-

specific laugh stimulus as a function of the first two discriminant variables that maximize individual separation, whereas colors represent the relative valence

of the laughter. Note that positively valanced laughs (in blue) such as amused and colaughter cluster more to the left, whereas negatively valanced laughs (in

red), such as malicious and nervous, tend to cluster to the right. The radar plot represents the loadings of the acoustic variables onto the first two discriminant

functions.
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R2¼ 0.041; AICc¼ 14 469) were the five best-fitted models

with the most power to explain accuracy in listeners’ judg-

ments of laughter context.

Post hoc analyses on the effects of the acoustic parameters

[Fig. 4(B)] within each context revealed that with a non-

negligible effect, malicious contexts were better recognized

when laughs were less bright (lower spectral centroid,

z¼�17.73; p< 0.001; d¼�0.35), less dysphonic (higher

CPP: z¼ 13.21; p< 0.001; d¼ 0.2), less noisy (lower mean

entropy, z¼�16.85; p< 0.001; d¼�0.33) but also louder

(subjective loudness, z¼ 10.42; p< 0.001; d¼�0.21) with

higher perceived amplitude variation (more rough: z¼ 121.00;

p< 0.001; d¼ 0.24), higher entropy variation (z¼ 15.89;

p< 0.001; d¼ 0.31), and with amplitude peaks at higher fre-

quencies (z¼ 12.31; p< 0.001; d¼ 0.24). The pitch was also

lower (z¼�14.33; p< 0.001; d¼�0.28) and more variable

(z¼ 14.29; p< 0.0011; d¼ 0.28) in laughs that were correctly

judged by listeners as malicious. Similarly, sarcastic laughs

were more often correctly recognized as such when they were

relatively lower in pitch (z¼�10.35; p< 0.001; d¼�0.20)

and less bright (lower spectral centroid z¼�10.47; p< 0.001;

d¼�0.21). Other acoustics parameters showed significant

effects on context recognition, but the effects were negligible

(Table S10 in the supplementary material, d< 0.20).

Together, these final results show that voice pitch

dimensions (i.e., fo and its variation) and acoustic measures

of energy (e.g., entropy, roughness, and CPP) encode social

contextual information in laughter that also predicts listen-

ers’ accuracy in decoding the meaning of laughter.

IV. DISCUSSION

Laughter is ubiquitous in social interaction and fulfills

complex pragmatic functions that are not yet well under-

stood. Some research suggests that people produce distinct

laugh types associated with their communicative intentions,

but other work demonstrates clear ambiguities in the acous-

tic structure of laughter that make laughs difficult to under-

stand out of context. Overall, we confirmed that volitional

laughter can in fact encode some social contextual informa-

tion, but it is limited. Voice pitch and vocal energy parame-

ters differentiated distinct volitional laughter contexts to

some extent. Classification algorithms and human listeners

were also able to correctly identify laughter contexts, though

not with high precision, and relied on the same acoustic

parameters. These findings support earlier work showing

that laughter in specific contexts can have distinguishable

features. However, we also found that classification algo-

rithms, as well as human listeners, made predictable errors

based on the emotional valence of laughter contexts.

Positive contexts were often confused with other positive

contexts, whereas negative contexts were often confused

with other negative contexts. For instance, amused and

colaughter laughs were often confused with one another, but

rarely misidentified as sarcastic or nervous. Laughs of a sim-

ilar valence also shared similar acoustic profiles, and this

further explained listeners’ (mis)assessments of laughter

context. While the listeners in our study were generally able

to judge the meaning of laughs, their performance was not

consistently accurate, with half of the social contexts being

recognized with only moderate accuracy or even below

chance level. The most recognizable context, malicious

laughter, was correctly identified around 50% of the time or

more, substantially better than the chance level of 12.5%.

We did not explicitly instruct vocalizers or listeners to adopt

either the perspective of speakers or listeners when rating

contexts, and this could also be a source of variation in judg-

ments between them.

Our results are consistent with most prior work, but

some differences emerged. For example, we found overall

lower automated classification accuracy than reported in

other research (e.g., Szameitat et al., 2009b) albeit with sim-

ilar judgment accuracy by human listeners (Szameitat and

Szameitat, 2024), which is fairly low overall. If the notion

of acoustically distinct laugh types was correct, we should

not find this pattern across multiple studies. Wood et al.
(2017) used social functional categories that map loosely

onto some of the categories used in the current study. Like

Wood et al., we found that mocking and amused laughs,

similar to their categories of dominance and reward, mani-

fested in quite different ways, especially in vocal pitch.

Wood and colleagues found that dominance laughs (like our

mocking laughter) tended to be lower in fo (pitch) and higher

in their center of gravity, acoustic features that are often

associated with high arousal and a larger perceived body

size (Briefer, 2020; Charlton and Reby, 2016; Pisanski and

Reby, 2021). Conversely, reward laughs (like our amused
laughter) tended to be higher in fo and noisier (high rough-

ness and lower harmonics-to-noise ratios, respectively). Our

acoustic classification of laughter relied on a somewhat lim-

ited set of features and is not comprehensive. Some acoustic

dimensions such as sones, jitter, and spectral centroid have

only been psychoacoustically calibrated for speech percep-

tion, and not for more complex vocalizations such as laugh-

ter. Thus, our approach may only capture some of the ways

laughter varies acoustically.

Despite variations across laughter studies in methodo-

logical choices of social communication categories, speak-

ers, and analytical methods, findings point to consistent

ambiguity in volitional laughter with measurable but some-

what minimal acoustic distinctions. A form–function per-

spective predicts that laughter should manifest itself

differently depending on the affective communicative func-

tion of the laugh. Our results support this prediction particu-

larly to the extent that volitional laughs similar in valence

(e.g., positive) often manifest similar acoustic features and

are more likely to be confused with one another. This

approach provides an elegant explanation for why we might

see both acoustic correlates of specific contexts, yet predict-

able classification errors.

Previous theorists have referred to this as an affect

induction view, referring to the ability of physical sound

features in vocalizations to induce an emotional state in lis-

teners, and to signal emotion and motivation as opposed to

J. Acoust. Soc. Am. 157 (4), April 2025 Daunay et al. 2785

https://doi.org/10.1121/10.0036388

 14 April 2025 17:21:47

https://doi.org/10.0036388
https://doi.org/10.1121/10.0036388


being functionally referential (Owren and Bachorowski,

2003; Owren and Rendall, 2001; Rendall and Owren, 2010).

Our data are clearly aligned with an affect induction

approach. It is possible that all categorization accuracy is

due to inferences drawn from acoustic patterning that enco-

des combinations of form–function correspondences. Any

accuracy observed in human listeners beyond what is given

by such correspondences may be a by-product of the forced-

choice paradigm and participants’ inferential judgments

(i.e., choosing from a list of given categories and making an

educated guess). Our results thus support the hypothesis that

volitional laughter is a graded rather than discreet signal,

not unlike crying in human infants (Bellieni et al., 2004;

Gustafson et al., 2000; Koutseff et al., 2018; Lockhart-

Bouron et al., 2023; Porter et al., 1986).

In our study, the malicious laughter context showed the

most distinct acoustic profile and was the most accurately

recognized. This may be due to its highly conventionalized

and stereotyped features, that may have been shaped by

media exposure (Kjeldgaard et al., 2023). Malicious laugh-

ter generally reflects a salient negative social intention char-

acterized by high levels of dominance and group exclusion

(Kjeldgaard-Christiansen et al., 2023; Nikopoulos, 2017;

Ruch et al., 2014). Mocking laughter is similar in this way,

but aligns more closely with the concept of schaden-
freude—a joy derived from the misfortunes of others

(Nikopoulos, 2017; Szameitat et al., 2009a; Szameitat et al.,

2009b; Szameitat et al., 2022). Acoustically, both malicious

and mocking laughs are characterized by low fundamental

frequency (pitch), loudness, and roughness, sharing features

commonly found in vocal intimidation (Anikin et al.,
2024).Our findings highlight the complexity of laughter

acoustics, wherein acoustic variations may be graded

through multiple emotional and motivational dimensions,

such as valence and arousal, but also dimensions such as

dominance. These dimensional aspects may combine within

the same call type in a graded manner, reflecting the

nuanced and dynamic nature of human vocal communica-

tion. Exploring acoustic gradation across multiple affective

dimensions is an important avenue for future research.

In our study, as in most previous work, speakers pro-

duced vocalizations in isolation and on command. This

experimental protocol is beneficial for many reasons. First,

we were interested specifically in volitional laughter, that is,

laughter that is produced voluntarily. The capacity for such

advanced vocal control of nonverbal vocalizations is some-

thing that sets humans apart from other primates, and may

offer key insights into the social functions of vocal control

and modulation (Pisanski et al., 2016). Second, we elicited

volitional laughs on demand for experimental control:

recordings must be consistent and of sufficient quality for

reliable acoustic analysis, and stimuli must not vary in ran-

dom ways that distract judges in perceptual tasks

(e.g., variable in noise, frequency response, etc.). It was also

critical to standardize the exact context for each laugh using

scripted vignettes, as an “amused” laugh may mean different

things to different vocalizers and listeners. However, this

control comes with a cost. Volitional vocalizers in the lab

generate linguistic and non-linguistic sounds that can differ

from spontaneous laughter, including potentially relying on

stereotyped preconceptions of communicative acts (e.g.,

what does sarcasm sound like?) (Bryant and Fox Tree,

2005). The use of professional actors does not particularly

alleviate this concern—work has demonstrated that non-

professional speakers are often not very different from pro-

fessional actors (J€urgens et al., 2015). More importantly,

real social interaction is generally quite complex, so vocal

production occurs in various social and physical contexts

that are not cleanly divided in the ways that researchers typi-

cally devise their studies. For example, in the case of laugh-

ter, a speaker might want to communicate sarcasm,

mocking, dominance, and amusement all at the same time.

Moreover, in a real-life conversation, a speaker may inter-

ject their laugh into a conversational turn with temporal con-

straints. By removing factors such as these in an

experimental context, researchers maximize the likelihood

of finding distinctions across gross categories of social inter-

action, both in production and perception. Thus, while our

results indicated that volitional laughter produced in the lab-

oratory can vary slightly as a function of its intended con-

text, volitional laughter in the real world may be less

context-specific, with more graded nuances. Moving for-

ward, our research can inform future predictions of how

laughter, whether volitional or spontaneous, manifests itself

in the often messy world of real social activity.

Future work could also incorporate more elements of

spontaneous social interaction into the analytical frame-

work, which can still contain a high degree of volitional

laughter. Work using videos from online sources strives to

accomplish this but with different costs, such as variations

in recording quality, loss of standardization, and lack of

information about the vocalizers, the actual contexts in

which communicative acts occur, or the extent to which a

vocalization was spontaneous or volitional (Anikin and

Persson, 2017). Experimental judgment paradigms unfortu-

nately engage cognitive mechanisms that are surely different

from those that are triggered during social interaction, with

all the dangers of demand characteristics in play (Bryant,

2021). Real-time manipulations of acoustic and visual infor-

mation (e.g., Arias Sarah et al., 2023), along with subtle

methods that probe people’s immediate reactions and

expectations, could prove to elicit data that better reflect

how people navigate their social worlds. We think it is

important to explore ways to increase ecological validity in

our tasks while maintaining sufficient experimental control.

When people are laughing spontaneously, we can still

expect overlap and confusion in laughter production and

perception for contexts with a similar valence or function.

However, some of the findings in the current study, and

other work on volitional laughter, might nevertheless have

only limited generalizability for spontaneous laughter given

the many specific pragmatic functions that volitional laughs

likely serve. Thus, while it is essential to continue studying

laughter produced on demand, future work should also
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examine possible nuances in spontaneous laughter, includ-

ing how it varies with valence. This approach could deepen

our understanding of how volitional laughter may have

evolved to exploit the nuances of spontaneous laughter

along this valence dimension.

While the laughter contexts used in the current study

were informed by past work (Devillers and Vidrascu, 2007;

Lavan et al., 2016; Mazzocconi et al., 2020; Nikopoulos,

2017; Ruch et al., 2014; Scott et al., 2014; Szameitat et al.,
2022), they are certainly not exhaustive. Our aim was to test

the claim that highly differentiated contexts would result in

distinct laughter types that would be acoustically and per-

ceptually discriminable, but we tested only eight such con-

texts. For example, we did not include backchannel laughter

(i.e., supportive, acknowledging laughter) that is typically

very low in arousal. Additionally, some contexts allowed for

different interpretations—for instance, in the amused con-

text, the presence of an audience was unclear, which could

have influenced laughter. Although we cannot generalize

across all possible laughter contexts, we can still largely

reject the notion that laughter types are robustly distinct,

having instead provided empirical support that laughter

operates in a graded way.

A potential limitation in our perception experiment is

that vocalizers were French while listeners were English.

Pragmatic rules around laughter production (Bryant and

Bainbridge, 2022; Mazzocconi et al., 2020) and humor pref-

erences (Martin and Ford, 2018) can vary across cultures,

and even closely related societies, but there is no evidence

to date that laughter acoustics vary cross-culturally.

Moreover, laughter perception seems highly consistent

across cultures. For example, participants from disparate

cultures can reliably identify spontaneous versus volitional

laughs at similar rates (Bryant et al., 2018), universally rec-

ognize friends versus strangers colaughing (Bryant et al.,
2016), and agree on judgments of emotional dimensions in

laughter and other non-linguistic vocalizations (Sauter et al.,
2010b). Thus, it is unlikely that the differing cultural back-

grounds of our vocalisers and listeners substantially influ-

enced our results, but more research on how laughter may

vary across cultures, and potential in-group biases in laugh-

ter perception is needed (Kamilo�glu et al., 2022; Szameitat

and Szameitat, 2024).

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary

methods and results.

ACKNOWLEDGMENTS

This research is based upon work supported by the

French National Research Agency for “SCREAM” Grant

No. ANR-21-CE28000701) awarded to D.R. and K.P. The

funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. We thank Mounia Kehy for assisting with data

collection, Andrey Anikin for developing soundgen and

giving feedback on the experimental design and data

analysis, and Vincent Arnaud for his assistance with the

classification algorithms.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Ethics Approval

Ethical approval for acoustic recording of human sub-

jects and analysis of their non-linguistic vocalizations was

provided by the Comit�e d’Ethique du CHU de Saint-Etienne

(IRBN692019/CHUSTE). Informed and written consent was

obtained from all participants

DATA AVAILABILITY

Data and codes developed for data processing

and analysis are available in zenodo public repository:

https://doi.org/10.5281/zenodo.15120255.

Ackermann, H., Hage, S. R., and Ziegler, W. (2014). “Brain mechanisms of

acoustic communication in humans and nonhuman primates: An evolu-

tionary perspective,” Behav. Brain Sci. 37, 529–546.

Amorim, M. C. P., Anikin, A., Mendes, A. J., Lima, C. F., Kotz, S. A., and

Pinheiro, A. P. (2021). “Changes in vocal emotion recognition across the

life span,” Emotion 21, 315–325.

Anikin, A. (2019). “Soundgen: An open-source tool for synthesizing non-

verbal vocalizations,” Behav. Res. 51, 778–792.
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